jump to navigation

From spin to mechanical osicillation June 14, 2009

Posted by keithkchan in fun stuffs, Journal club.

I haven’t updated the blog for some time, so I should say something now.
Well, there is a rather interesting report appear in Nature, Entangled mechanical oscillators. You can you find it on arXiv 0901.4779.

You probably have heard of quantum entanglement many times, which means that the state is not factorizable. A famous example is the Schr\ddot{o}dinger’s cat. Measurement causes the wave function to collapse. When you do measurement you either push the cat to the hell or drag it out of the hell. But this is still a thought experiment. Not just because physicists are kind to animals, but also it is impossible to do it on macroscopic scales because of decoherence. All the examples I heard of are limited to entanglement of spin or polarization. But in this the Nature report, a group of physicists at NIST have managed to convert spin entanglement to mechanical oscillations. The experimental details are technical, and I don’t really understand. In (and only in) simple terms, they first entangle the spin of two magnesium and two beryllium ions, and then separate them into two potential wells. In each well, there is one magnesium and one beryllium ion, which form an oscillator in the potential well. They then carry some measurements which create the motional entangle state. I don’t understand how they really do it. For those interested in, you should consult their paper.

The significance of this paper is they have for the first time created mechanical entangled states. This is one important step towards Schr\ddot{o}dinger. But, cats, no panic, there may be still 500 steps away.

Incidentally, there is an article in Science describing this paper. The article is fine. But don’t read the comments if you don’t know much about this subject. I find them dubious, if not totally ridiculous. You may want to check it against John Baez’s crackpot index.



No comments yet — be the first.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: